Reversible light-activation of ribulose bisphosphate carboxylase/oxygenase in isolated barley protoplasts and chloroplasts.
نویسنده
چکیده
The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase displayed near-maximal activity in isolated, intact barley (Hordeum vulgare L. cv. Pennrad) mesophyll protoplasts. The carboxylase deactivated 40 to 50% in situ when protoplasts were dark-incubated 20 minutes in air-equilibrated solutions. Enzyme activity was fully restored after 1 to 2 minutes of light. Addition of 5 millimolar NaHCO(3) to the incubation medium prevented dark-inactivation of the carboxylase. There was no permanent CO(2)-dependent activation of the protoplast carboxylase either in light or dark. Activation of the carboxylase from ruptured protoplasts was not increased significantly by in vitro preincubation with CO(2) and Mg(2+). In contrast to the enzyme in protoplasts, the carboxylase in intact barley chloroplasts was not fully reactivated by light at atmospheric CO(2) levels. The lag phase in carbon assimilation was not lengthened by dark-adapting protoplasts to low CO(2) demonstrating that light-activation of the carboxylase was not involved in photosynthetic induction. Irradiance response curves for reactivation of the the carboxylase and for CO(2) fixation by isolated barley protoplasts were similar. The above results show that there was a fully reversible light-activation of the carboxylase in isolated barley protoplasts at physiologically significant CO(2) levels.
منابع مشابه
Exchange Properties of the Activator CO(2) of Spinach Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.
The exchange properties of the activator CO(2) of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO(2) on the enzyme both in vitro and i...
متن کاملRibulose 1,5-bisphosphate and activation of the carboxylase in the chloroplast.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO(2). Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chloro...
متن کاملPurification and species distribution of rubisco activase.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase, a soluble chloroplast protein which promotes light-dependent rubisco activation, was partially purified from spinach chloroplasts by ion-exchange and gel-filtration fast protein liquid chromatography. The protein could also be isolated using rate zonal centrifugation in sucrose gradients followed by conventional ion-exchange on...
متن کاملCharacteristics of Ribulose-1,5-Bisphosphate Carboxylase/ Oxygenase Degradation by Lysates of Mechanically Isolated Chloroplasts from Wheat Leaves1
The lysate from intact chloroplasts mechanically isolated from primary leaves of 9 day old seedlings of wheat (Triticum aestivum L. var Aoba) was incubated in the pH range of 5.5 to 8.5 at 370C for 5 hours. Proteolytic activity against ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was estimated by disappearance of the large subunit of Rubisco or the appearance of its de...
متن کاملPhotorespiration-induced reduction of ribulose bisphosphate carboxylase activation level.
Leaf photosynthesis and ribulose bisphosphate carboxylase activation level were inhibited in several mutants of the C(3) crucifer Arabidopsis thaliana which possess lesions in the photorespiratory pathway. This inhibition occurred when leaves were illuminated under a photorespiratory atmosphere (50% O(2), 350 microliters per liter CO(2), balance N(2)), but not in nonphotorespiratory conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 70 2 شماره
صفحات -
تاریخ انتشار 1982